算法其实很简单—弗洛伊德(Floyd)算法

算法 专栏收录该内容
15 篇文章 0 订阅

 

目录

1.弗洛伊德(Floyd)算法介绍

2.弗洛伊德(Floyd)算法最佳应用-最短路径

3.弗洛伊德(Floyd)算法图解分析

3.1 弗洛伊德算法的步骤:

4.代码实现


1.弗洛伊德(Floyd)算法介绍

1)和Dijkstra算法一 样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法。该算法名称以创始人之一、1978年图灵 奖获得者、斯坦福大学计算机科学系教授罗伯特.弗洛伊德命名

2)弗洛伊德算法(Floyd)计算图中各个顶点之间的最短路径

3)迪杰斯特拉算法用于计算图中某一个顶点到其他顶点的最短路径。

4)弗洛伊德算法VS迪杰斯特拉算法:迪杰斯特拉算法通过选定的被访问项点,求出从出发访问顶点到其他项点的最短路径;弗洛伊德算法中每个顶点都是出发访问点,所以需要将每一个顶点看做被访问顶点,求出从每一个顶点到其他项点的最短路径。

2.弗洛伊德(Floyd)算法最佳应用-最短路径

1)胜利乡有7个村庄(A,B,C,D,E,E, G)

2)各个村庄的距离用边线表示(权),比如A-B距离5公里

3)问:如何计算出各村庄到其它各村庄的最短距离?

 

3.弗洛伊德(Floyd)算法图解分析

1)设置顶点vi到顶点vk的最短路径己知为Lik,顶点vk到vj的最短路径已知为Lkj,顶点vi到vj的路径为Lij,则vi到vj的最 短路径为: min((Lik+Lkj),Lij), vk的取值为图中所有顶点,则可获得vi到vj的最短路径

2)至于vi到vk的最短路径Lik或者vk到vj的最短路径Lkj,是以同样的方式获得

3)弗洛伊德(Floyd)算法图解分析举例说明

3.1 弗洛伊德算法的步骤:

初始状态:

第一轮循环中,以A(下标为: 0)作为中间顶点[即把A作为中间顶点的所有情况都进行遍历,

就会得到更新距离表和前驱关系],距离表和前驱关系更新为:

 

将A做为中间顶点的情况有:

  1. C->A->G:9,C->G:N
  2. C->A->B:12,C->B:N
  3. G->A->B:7,G->B:3

通过比较,得出最小的值,然后更新距离表和前驱关系表

以此类推。。。

4.代码实现

package com.example.datastructureandalgorithm.floyd;

import java.util.Arrays;

/**
 * @author 浪子傑
 * @version 1.0
 * @date 2020/6/27
 */
public class FloydDemo {
    public static void main(String[] args) {
        char[] vertex = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        int[][] matrix = new int[vertex.length][vertex.length];
        final int N = 65535;
        matrix[0] = new int[]{0, 5, 7, N, N, N, 2};
        matrix[1] = new int[]{5, 0, N, 9, N, N, 3};
        matrix[2] = new int[]{7, N, 0, N, 8, N, N};
        matrix[3] = new int[]{N, 9, N, 0, N, 4, N};
        matrix[4] = new int[]{N, N, 8, N, 0, 5, 4};
        matrix[5] = new int[]{N, N, N, 4, 5, 0, 6};
        matrix[6] = new int[]{2, 3, N, N, 4, 6, 0};

        Graph graph = new Graph(vertex, matrix);
        graph.floyd();
        graph.show();

    }
}

// 创建图
class Graph {
    /**
     * 存放顶点的数组
     */
    private char[] vertex;

    /**
     * 保存各个顶点到其他顶点的距离
     */
    private int[][] dis;

    /**
     * 保存到达目标顶点的前驱节点
     */
    private int[][] pre;

    /**
     * 构造函数
     *
     * @param vertex 顶点数组
     * @param dis    邻接矩阵
     */
    public Graph(char[] vertex, int[][] dis) {
        int length = vertex.length;
        this.vertex = vertex;
        this.dis = dis;
        this.pre = new int[length][length];
        for (int i = 0; i < length; i++) {
            Arrays.fill(pre[i], i);
        }
    }

    /**
     * 展示
     */
    public void show() {
        for (int i = 0; i < dis.length; i++) {
            for (int j = 0; j < dis[i].length; j++) {
                System.out.print(vertex[pre[i][j]] + " ");
            }
            System.out.println();
            for (int j = 0; j < dis[i].length; j++) {
                System.out.print("(" + vertex[i] + "-->" + vertex[j] + ":" + dis[i][j] + ")");
            }
            System.out.println();
            System.out.println();
        }
    }

    /**
     * 弗洛伊德算法
     */
    public void floyd() {
        // k为中间节点的下标
        for (int k = 0; k < dis.length; k++) {
            // i为开始节点的下标
            for (int i = 0; i < dis.length; i++) {
                // j为结束节点的下标
                for (int j = 0; j < dis.length; j++) {
                    // 计算以k为中间节点,i为开始节点,j为结束节点,i->k->j的距离
                    int length = dis[i][k] + dis[k][j];
                    // 将i->k->j的距离与i->j的距离进行比较
                    // 如果i->j的距离大,则更新距离表和前驱节点表
                    if (length < dis[i][j]) {
                        dis[i][j] = length;
                        pre[i][j] = pre[i][k];
                    }
                }
            }
        }
    }
}

 

  • 13
    点赞
  • 0
    评论
  • 63
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

打赏
文章很值,打赏犒劳作者一下
相关推荐
<p> 本教程为授权出品 </p> <p> <br /> </p> <p> 课程介绍: </p> <p> <span style="color:#404040;">1.算法是程序的灵魂,优秀的程序在对海量数据处理时,依然保持高速计算,就需要高效的数据结构算法支撑。</span><br /> <br /> <span style="color:#404040;">2.网上数据结构算法的课程不少,但存在两个问题:</span><br /> <br /> <span style="color:#404040;">1)授课方式单一,大多是照着代码念一遍,数据结构算法本身就比较难理解,对基础好的学员来说,还好一点,对基础不好的学生来说,基本上就是听天书了</span><br /> <span style="color:#404040;">2)说是讲数据结构算法,但大多是挂羊头卖狗肉,算法讲的很少。 本课程针对上述问题,有针对性的进行了升级 </span><br /> <span style="color:#404040;">3)授课方式采用图解+算法游戏的方式,让课程生动有趣好理解 </span><br /> <span style="color:#404040;">4)系统全面的讲解了数据结构算法, 除常用数据结构算法外,还包括程序员常用10大算法:二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法弗洛伊德算法、马踏棋盘算法。可以解决面试遇到的最短路径、最小生成树、最小连通图、动态规划等问题及衍生出的面试题,让你秒杀其他面试小伙伴</span><br /> <br /> <span style="color:#404040;">3.如果你不想永远都是代码工人,就需要花时间来研究下数据结构算法。</span><br /> <br /> <span style="color:#404040;">教程内容:</span><br /> <span style="color:#404040;">本教程是使用Java来讲解数据结构算法,考虑到数据结构算法较难,授课采用图解加算法游戏的方式。内容包括: 稀疏数组、单向队列、环形队列、单向链表、双向链表、环形链表、约瑟夫问题、栈、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式、递归与回溯、迷宫问题、八皇后问题、算法的时间复杂度、冒泡排序、选择排序、插入排序、快速排序、归并排序、希尔排序、基数排序(桶排序)、堆排序、排序速度分析、二分查找、插值查找、斐波那契查找、散列、哈希表、二叉树、二叉树与数组转换、二叉排序树(BST)、AVL树、线索二叉树、赫夫曼树、赫夫曼编码、多路查找树(B树B+树和B*树)、图、图的DFS算法和BFS、程序员常用10大算法、二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法弗洛伊德算法马踏棋盘算法。</span><br /> <br /> <span style="color:#404040;">学习目标:</span><br /> <span style="color:#404040;">通过学习,学员能掌握主流数据结构算法的实现机制,开阔编程思路,提高优化程序的能力。</span> </p>
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页

打赏

我愿随风而行

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值